Molecular and functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins
نویسندگان
چکیده
Macromolecular trafficking across the nuclear envelope involves interactions between cytosolic transport factors and nuclear pore complex proteins. The p62 complex, an assembly of 62, 58, 54, and 45-kD O-linked glycoproteins-localized near the central gated channel of the nuclear pore complex, has been directly implicated in nuclear protein import. The cDNA cloning of rat p62 was reported previously. We have now carried out cDNA cloning of rat p58, p54, and p45. We found that p58 contains regions with FG (Phe, Gly) and PA (Pro, Ala) repeats at both its NH2 and COOH termini separated by a predicted alpha-helical coiled-coil region, while p54 has an NH2-terminal FG and PA repeat region and a COOH-terminal predicted coiled-coil region. p45 and p58 appear to be generated by alternative splicing, with p45 containing the NH2-terminal FG repeat region and the coiled-coil region of p58. Using immunogold electron microscopy, we found that p58/p45 and p54 are localized on both sides of the nuclear pore complex, like p62. Previous studies have shown that immobilized recombinant p62 can bind the cytosolic nuclear import factor NTF2 and thereby deplete transport activity from cytosol. We have now found that immobilized recombinant p58 and p54 also can deplete nuclear transport activity from cytosol, and that p62, p58, and p54 bind directly to the cytosolic nuclear import factors p97 and NTF2. At least in the case of p58, this involves FG repeat regions. Moreover, p58 can bind to a complex containing transport ligand, the nuclear localization sequence receptor (Srp1 alpha) and p97. These data support a model in which the p62 complex binds to a multicomponent particle consisting of transport ligand and cytosolic factors to achieve accumulation of ligand near the central gated channel of the nuclear pore complex.
منابع مشابه
Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is required for correct nuclear pore assembly.
Yeast and vertebrate nuclear pores display significant morphological similarity by electron microscopy, but sequence similarity between the respective proteins has been more difficult to observe. Herein we have identified a vertebrate nucleoporin, Nup93, in both human and Xenopus that has proved to be an evolutionarily related homologue of the yeast nucleoporin Nic96p. Polyclonal antiserum to h...
متن کاملInterference with the cytoplasmic tail of gp210 disrupts “close apposition” of nuclear membranes and blocks nuclear pore dilation
We tested the hypothesis that gp210, an integral membrane protein of nuclear pore complexes (NPCs), mediates nuclear pore formation. Gp210 has a large lumenal domain and small COOH-terminal tail exposed to the cytoplasm. We studied the exposed tail. We added recombinant tail polypeptides to Xenopus nuclear assembly extracts, or inhibited endogenous gp210 tails using anti-tail antibodies. Both s...
متن کاملMacromolecular interactions in the nucleoporin p62 complex of rat nuclear pores: binding of nucleoporin p54 to the rod domain of p62
Nuclear pore complexes are constructed from a large number of different proteins, called collectively nucleoporins. One of these nucleoporins, p62, has an alpha-helical coiled-coil COOH-terminal rod domain linked to an NH2-terminal domain that contains a series of degenerate pentapeptide repeats. In nuclear pores p62 forms a tight complex with at least two other proteins, p58 and p54, which can...
متن کاملA complex of nuclear pore proteins required for pore function
A family of proteins bearing novel N-acetylglucosamine residues has previously been found to be required to form functional nuclear pores. To begin to determine which of the proteins in this family are essential for pore function, antisera were raised to each of three members of the family, p62, p58, and p54. With these antisera, it was possible to deplete nuclear reconstitution extracts of the...
متن کاملPrediction of the structural and spectral properties for L,L-ethylenedicysteine diethylester (EC) and its complex with Technetium-99m radionuclide
The technetium-99m complex of the L,L-ethylenedicysteine diethylester (EC), of the brain imaging agent, was reported as a good choice for replacement of the renal nuclear medicines like OIH radiopharmaceutical. This present research work studies the structural, electronic and spectral properties of the EC compound and its complex with technetium-99m radionuclide from theoretical insight. All co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 134 شماره
صفحات -
تاریخ انتشار 1996